
Welcome

• Welcome to Statistics, Summer 2023.

• Goal of the course: prepare students for 1st-year econometrics sequence.

• Structure
− Lectures on Mondays, Wednesdays, and Fridays at 9-11h.
− TA sessions on Fridays (?) with Bruno Daré.
− Grading: statistics problem sets (10%), first exam (45%), second exam (45%).
− Problem sets due one week later.
− Main reference: Casella & Berger (2002) Statistical Inference
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"You can, for example, never foretell what any one man will do, but you can say with precision
what an average number will be up to. Individuals vary, but percentages remain constant. So
says the statistician." – Sherlock Holmes, The Sign of Four.

• Goal of this lecture: outline some basic ideas of probability theory that are crucial to the study of
statistics.
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introduction to probability

In this section, we aim to study the following questions:

• What is a "probability"?

• Do probabilities always exist? (the answer is no)

• Can we define probabilities on any collection of events? (the answer is no)

• Under which conditions is it possible to assign probabilities? (we need σ-algebras)

• How to calculate probabilities when they exist?
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probability spaces

• Preview: a probability space is a triplet (Ω,B,P) where
− Ω is a set
− B is a σ-algebra on Ω
− P is a probability measure on (Ω,B)

• The basic interpretation of the components is as follows:
− Ω is the sample space, which consists of all possible "states" relevant to the experiment – or set of all

possible outcomes.
− B is the collection of events, which is a collection of subsets of Ω to which we aim to assign a

probability.
− P is a probability measure, which assigns a number between 0 and 1 to events in B based on how

likely the event is to occur.
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fundamental sets

• definition: the set Ω collects all possible outcomes of a particular experiment, also called the
sample space.

• examples:
− Tossing a coin: Ω = {H,T}
− Gauging time between price changes: Ω = (0,∞)
− Exam outcomes: Ω = [0, 10]
− The first is countable due to the one-to-one correspondence with integers, whereas the last two sets

are uncountable
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fundamental sets

• definition: An event is any collection of possible outcomes of an experiment, that is, any subset of
Ω (including Ω itself).

• example: consider the experiment of selecting a random card from a deck and noting its suit:
clubs (C), diamonds (D), hearts (H), spades (S).

• The sample space is

Ω = {C ,D,H, S}

• Possible events are

A = ∅
B = {D, S}
C = {C ,D,H}
D = {C ,D,H, S} = Ω

where ∅ represents the empty set.
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elementary set operations

• union A ∪ B = {x | x ∈ A or x ∈ B}

• intersection A ∩ B = {x | x ∈ A and x ∈ B}

• subtraction A− B = {x | x ∈ A and x /∈ B}

• complementation Ac = {x | x /∈ A} = Ω− A

• how to order and equate sets?

A ⊂ B ⇔ x ∈ A ⇒ x ∈ B

A = B ⇔ A ⊂ B ⇒ B ⊂ A
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how to combine elementary set operations?

• commutativity A ∪ B = B ∪ A
A ∩ B = B ∩ A

• associativity A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

• distributive laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

• DeMorgan’s laws (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc
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proof of the first distributive law

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

• formal proof requires to show that the sets in the RHS and in the LHS contain each other.

• (proof) (⇒): Let x ∈ A ∩ (B ∪ C) = {x | x ∈ A and x ∈ (B ∪ C)}, meaning that x is definitely
either in B or in C . Given that x must also belong to A, we have that x is either in A ∩ B or in
A ∩ C . This implies that x ∈ (A ∩ B) ∪ (A ∩ C). ■

• (proof) (⇐): Now assume the latter, that is to say, that x is either in A ∩ B or in A ∩ C . If
x ∈ (A ∩ B), then x is both in A and in B. However, as x is in B, it must also belong to B ∪ C ,
implying that x ∈ A∩ (B ∪C). If, on the other hand, x ∈ (A∩C), by the same reasoning, it must
also be in A ∩ (B ∪ C), completing the proof. ■
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extending to infinite collections. . .

• if set collection is countable,
∞⋃
i=1

Ai = {x | x ∈ Ai for some i}

∞⋂
i=1

Ai = {x | x ∈ Ai for every i}

• example: Let S = (0, 1] and define Ai = [ 1
i
, 1]. Then

∞⋃
i=1

Ai =
∞⋃
i=1

[
1
i
, 1
]

=

{
x ∈ (0, 1]|x ∈

[
1
i
, 1
]

for some i

}
= {x ∈ (0, 1]} = (0, 1]

∞⋂
i=1

Ai =
∞⋂
i=1

[
1
i
, 1
]

=

{
x ∈ (0, 1]|x ∈

[
1
i
, 1
]

for all i
}

= {x ∈ (0, 1]|x ∈ [1, 1]} = {1}
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extending to uncountable infinite collections. . .

• extends naturally to uncountable collections of sets⋃
a∈Γ

Aa = {x ∈ S |x ∈ Aa for some a}

⋂
a∈Γ

Aa = {x ∈ S |x ∈ Aa for all a}

• we can take, for example, Γ = R.
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some final terminology

• A and B are mutually exclusive (or disjoint) if A ∩ B = ∅

• A1,A2, . . . are pairwise disjoint if Ai ∩ Aj = ∅ for all 1 ≤ i ̸= j ≤ ∞

• definition: If A1,A2, . . . are pairwise disjoint and such that ∪∞
i=1Ai = S , then we say that they

form a partition of the sample space.

• for example, Ai = [i , i + 1) is a partition of [1,∞).
− [1, 2), [2, 3), [3, 4), ...

• partitions are very useful in that they allow us to divide the sample space into small,
non-overlapping pieces.
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σ-algebras

• definition: a σ-algebra on Ω is a collection of sets B of subsets of Ω such that
(i) Ω ∈ B
(ii) A ∈ B ⇒ Ac ∈ B
(iii) A1, . . . ,An, . . . ∈ B ⇒

⋃∞
i=1 Ai ∈ B

• It follows immediately that ∅ ∈ B by (i)+(ii).

• The power set P(Ω) of a set Ω is a σ-algebra. (proof)

• An algebra is such that (iii’) A1, . . . ,An ∈ B ⇒
⋃n

i=1 Ai ∈ B, for n ≥ 1.
=⇒ every σ-algebra is an algebra (why?)

15 / 83

https://proofwiki.org/wiki/Power_Set_is_Sigma-Algebra


σ-algebras examples

Which of those are σ−algebras with Ω = {1, 2, 3}?

(1) B = {∅, {1} , {2, 3} ,Ω}.

(2) B = {∅, {1, 2} , {2, 3} ,Ω}.

(3) B = {∅,Ω}.

(4) B = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} ,Ω}.

(5) B = {∅, {1, 2} , {1, 3} , {2, 3} ,Ω}

answer: (1), (3), (4)
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σ-algebras

• proposition: B is closed under countable intersections,

A1, . . . ,An, . . . ∈ B ⇒
∞⋂
i=1

Ai ∈ B

• (proof) (ii) implies that Ac
1,A

c
2, . . . ∈ B and hence it follows from (iii) that ∪∞

i=1A
c
i ∈ B. From

DeMorgan’s law and (ii), we have ∩∞
i=1Ai ∈ B given that(

∞⋃
i=1

Ac
i

)c

=
∞⋂
i=1

Ai

■
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σ-algebras
• proposition: given a σ-algebra B on Ω, let I be an arbitrary non-empty index set and {Bα}α∈I a

family of σ-algebras on Ω. The collection ∩α∈IBα is a σ-algebra on Ω.

• (proof) The family of events ∩α∈IBα satisfies property (iii) because

A1,A2, . . . ∈
⋂
α∈I

Bα ⇒ A1,A2, · · · ∈ Bα for all α ∈ I

⇒
∞⋃
i=1

Ai ∈ Bα for all α ∈ I

⇒
∞⋃
i=1

Ai ∈
⋂
α∈I

Bα

■

• Given two σ-algebras B and G, the collection of events B ∪ G is not necessarily a σ-algebra.

B = {∅,Ω, {1, 2} , {3, 4}}
G = {∅,Ω, {1} , {2, 3, 4}}

B ∪ G = {∅,Ω, {1, 2} , {3, 4} , {1} , {2, 3, 4}}
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σ-algebras

• definition: given a collection C of subsets of Ω, the σ-algebra σ(C) on Ω generated by C is the
smallest σ-algebra containing C. It is the intersection of all σ-algebras on Ω which have C as a
subclass.

• example: given any subset A of Ω, the smallest σ-algebra containing A is

σ(A) = {∅,Ω,A,Ac}

• example: suppose that Ω = {1, 2, 3, 4}, and C = {{1} , {1, 3, 4}}. Then

σ (C) = {∅,Ω, {1} , {1, 3, 4} , {2, 3, 4} , {2} , {1, 2} , {3, 4}}
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Borel σ-algebras

• definition: The Borel σ-algebra B(Ω) on Ω is the σ-algebra on Ω generated by the family of all
open sets,

B(Ω) = σ ({A ⊆ Ω| A is open})

• The most important σ-algebras are the Borel σ-algebras on Rn.

• proposition: For real numbers, we have the following equivalent characterizations:

(i) B(R) = σ ({(a, b)|a, b ∈ R, a < b})

(ii) B(R) = σ ({(a, b]|a, b ∈ R, a < b})

(iii) B(R) = σ ({[a, b]|a, b ∈ R, a < b})

(iv) B(R) = σ ({(−∞, a]|a ∈ R})
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Borel σ-algebras

• (proof of i) (⇐) An open interval (a, b) is an open set, hence

{(a, b)|a, b ∈ R, a < b} ⊆ {A ⊆ R| A is open} ⊆ B(R)

Thus

σ ({(a, b)|a, b ∈ R, a < b}) ⊆ B(R)

by definition of generated σ-algebras (“intersection of all σ-algebras on Ω which contain C.”) ■

• (⇒) Let O ⊆ R be an open set. Since every open set in R is a countable union of open intervals,
there exists sequences of real numbers {an}∞n=1 and {bn}∞n=1 with ak < bk for all k = 1, 2, . . . such
that

O =
∞⋃
n=1

(an, bn)

Since a σ-algebra is closed under countable unions, it follows that

O =
∞⋃
n=1

(an, bn) ∈ σ ({(a, b)|a, b ∈ R, a < b})
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Borel σ-algebras

• we conclude that

B(R) = σ ({A ⊆ R|A is open}) ⊆ σ ({(a, b)|a, b ∈ R, a < b})

which finishes the proof. ■

• Let A ⊆ R be a countable set. Then A ∈ B(R). (proof left as an exercise)
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from set theory to probability theory. . .

• We have investigated set relations and σ-algebras. We can now link those sets to probabilities.

• example: when tossing a fair dice, the possible outcomes are 1, 2, 3, 4, 5 and 6. Therefore a
natural choice for the sample space is

Ω = {1, 2, 3, 4, 5, 6}.

We then associate an outcome ω ∈ Ω with the number of black dots that turn up on the dice. As
our collection of sets B to which we want to assign probabilities, lets assume that B is the power
set of Ω, i.e., B consists of all possible subsets of Ω. Finally, we define a probability measure P for
sets A ∈ B by

P(A) =
number of elements in A

6

With this definition,
− P(Ω) = 1
− P({1}) = P({2}) = · · · = P({6}) = 1/6
− if A and B are disjoint in B, P(A ∪ B) = P(A) + P(B).
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relative frequency and probability. . .

• idea: if we carry out an experiment a number of times, different outcomes may arise each time or
some outcomes may repeat

• frequency of occurrence ∼ probability

− relative frequency of any event is always between zero and one

− fundamental law of statistics (a.k.a. Glivenko-Cantelli theorem) says that, as the number of
experiments grows to infinity, the relative frequency of an event converges to its probability.

− this is very appealing and intuitive, but involves some philosophical interpretations that we should
perhaps not mess with, so we will take a more axiomatic approach.

− P.S. see Dahis (2019) for a discussion about randomness and probability.
− We do not observe the true probability. We make guesses, maybe based on axioms.
− “Probability is a claim about a variable’s frequency distribution”.
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Kolmogorov’s axiomatic foundations

• goal: for each event A in the sample space Ω, we wish to associate with A a number
0 ≤ P(A) ≤ 1 that we will call the probability of A.

• The probability of A also has to satisfy some intuitive properties.

• definition: given a sample space Ω and a corresponding σ−algebra B, a probability function P(·)
with domain B satisfies
(i) P(A) ≥ 0 for all A ∈ B
(ii) P(Ω) = 1, and
(iii) P

(⋃∞
i=1 Ai

)
=
∑∞

i=1 P(Ai ) if A1,A2, . . . ∈ B are pairwise disjoint
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Kolmogorov’s axiomatic foundations

• In view of the example above, why do we need to specify the collection of sets B?

• In the dice example, specification of B was not crucial because the set of outcomes was finite.

• When the set of outcomes is infinite, e.g., the real numbers, things become much more difficult,
and we will have to be much more formal to ensure that probabilities exist.
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defining a legitimate probability function

• theorem: let B denote any σ-algebra of subsets of a finite sample space S = {s1, s2, . . . , sn} and
let p1, p2, . . . , pn denote nonnegative numbers that sum to 1; for any A ∈ B, define

P(A) =
∑

{i | si∈A}

pi .

Then P(·) is a probability function on B.

• proof: (i) is true because P(A) =
∑

{i | si∈A} pi ≥ 0 for any A ∈ B given that every pi ≥ 0; (ii)
holds because P(S) =

∑
{i | si∈S} pi =

∑n
i=1 pi = 1; and (iii) is true because, if A1,A2, . . . ,An ∈ B

are pairwise disjoint events, then

P

(
n⋃

i=1

Ai

)
=

∑
{j | sj∈

⋃n
i=1 Ai}

pj =
n∑

i=1

∑
{j | sj∈Ai}

pj =
n∑

i=1

P(Ai )

by definition of P(A) and by disjointness of the Ai ’s given that the same pj ’s appear exactly once
on each side of the equality. ■
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why do we need a collection of sets B?

• Let A1, A2, . . . be a countably infinite collection of disjoint sets in B. We require that

P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P(An)

and P(Ω) = 1.

• counterexample: consider the case of drawing a random number with equal probability from the
interval Ω = [0, 1) ∩Q. Q is countable, so there are A1, A2, . . . , such that Ω =

⋃∞
n=1 An and

where each An contains a single element. It follows that

P ([0, 1) ∩Q) = P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P (An)

The sum on the RHS is either 0 or ∞, which contradicts P([0, 1) ∩Q) = 1. ■

• Counterexample also holds to uncountably infinite union of sets.
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why do we need a collection of sets B?

• takeaway: it is not straightforward to assign probabilities that satisfy Komolgorov’s axioms when
Ω is infinite.

• what sort of properties do we want the collection of sets B to which we can assign a probability to
satisfy?

• It turns out that we have to define a measure and to require B to be a σ-algebra.
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measure

• definition: Let (S ,S) be a measurable space, so that S is a σ-algebra on the set S . A measure
defined on (S ,S) is a function µ : S → [0,∞] that is countably additive, i.e., it is such that
(i) µ(∅) = 0
(ii) if A1,A2, · · · ∈ S is any sequence of pairwise disjoint sets, then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ (An)

• The triplet (S ,S, µ) is called a measure space. Given a measure space, we say that µ is a
probability measure if µ(S) = 1.

− The triplet (S ,S,P) is called a probability space.

• We also say that µ is a finite measure if µ(S) < ∞. µ is a σ-finite measure if there is a sequence
A1,A2, ... ∈ S such that

µ(An) < ∞ for all n ≥ 1 and
∞⋃
n=1

An = S
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some mechanics of measures

• Let (S ,S, µ) be a measure space. Given any increasing sequence A1 ⊆ A2 ⊆ · · · ⊆ of sets in S,
we can define the limit of the sequence by

lim
n→∞

An =
∞⋃
n=1

An

Then

µ
(
lim

n→∞
An

)
= lim

n→∞
µ (An) .

• Similarly, if A1 ⊇ A2 ⊇ · · · is a decreasing sequence of sets in S, the limit is

lim
n→∞

An =
∞⋂
n=1

An

In this case, if µ(A1) < ∞ then

µ
(
lim

n→∞
An

)
= lim

n→∞
µ(An).
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some mechanics of measures

• (proof) Given an increasing sequence A1 ⊆ A2 ⊆ · · · of sets in S, let B1 = A1 and define
recursively Bn = An\An−1 for n ≥ 2. By construction, the events B1,B2, . . . are pairwise disjoint,

An =
n⋃

k=1

Bk and
∞⋃
n=1

An =
∞⋃
k=1

Bk .

As a consequence,

µ
(
lim

n→∞
An

)
= µ

(
∞⋃
n=1

An

)
= µ

(
∞⋃
k=1

Bk

)

=
∞∑
k=1

µ(Bk) = lim
n→∞

n∑
k=1

µ(Bk)

= lim
n→∞

µ

(
n⋃

k=1

Bk

)
= lim

n→∞
µ(An)

■

The proof is similar for the decreasing case. (exercise!)
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intuition for next slides

• In many cases it is hard to define a probability function on all sets A in a σ-algebra.

• Caratheodory’s extension theorem shows that it is sufficient to define the probability measure on
an algebra A instead. The probability measure is then uniquely defined on σ(A), in a way
consistent with its definition on A.

− The unique measure will be the Lebesgue measure.

• “Procedure”

1. We will start from an algebra of intervals.
− “An algebra is a collection of subsets closed under finite unions and intersections.”

2. Define the pre-measure with certain properties.

3. The theorem implies there exists a unique “length” measure on the sigma algebra generated by the
algebra.

− “A sigma algebra is a collection closed under countable unions and intersections.”
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construction of a measure

(Caratheodory’s Extension Theorem) Suppose that A is an algebra on a set Ω and let S = σ(A). Also,
suppose that a pre-measure function µ0 : A → [0,∞) is countably additive and σ-finite in the sense
that

(i) µ0(∅) = 0 and

(ii) if A1,A2, · · · ∈ A is any sequence of pairwise disjoint set such that
⋃∞

n=1 An ∈ A, then

µ0

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ0(An)

(iii) there exists A1,A2, · · · ∈ A such that µ0(An) < ∞ for all n = 1, 2, . . . and
⋃∞

n=1 An = S

then there exists a unique measure µ on (S ,S) such that

µ(A) = µ0(A) for all A ∈ A.
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construction of a measure

• Let A be the collection of sets C ⊆ R that admit the representation

C = (a1, b1] ∪ · · · ∪ (ak , bk ]

or

C = (−∞, b0] ∪ (a1, b1] ∪ · · · ∪ (ak , bk ]

or

C = (a1, b1] ∪ · · · ∪ (ak , bk ] ∪ (ak+1,∞)

or

C = (−∞, b0] ∪ (a1, b1] ∪ · · · ∪ (ak , bk ] ∪ (ak+1,∞)

for some k ≥ 1 and reals −∞ < b0 < a1 < b1 < · · · < ak < bk < ak+1 < ∞. We can check that
this collection is an algebra on R and that σ(A) = B(R).
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construction of a measure
• Let F : R → R be increasing and right-continuous, i.e., for every x ∈ R, the limit from the right
limy→x+ = F (x)).

• We define the function µ0 : A → [0,∞) as follows

µ0(C) =
k∑

n=1

F (bn)− F (an)

or

µ0(C) = F (b0)− F (−∞) +
k∑

n=1

F (bn)− F (an)

or

µ0(C) =
k∑

n=1

F (bn)− F (an) + F (∞)− F (ak+1)

or

µ0(C) = F (b0)− F (−∞) +
k∑

n=1

F (bn)− F (an) + F (∞)− F (ak+1)
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construction of a measure

• It is not trivial but it can be shown that µ0 is countably additive.

• So, using the Caratheodory’s Extension Theorem, µ0 has a unique extension to a measure µ on
(R,B(R)).

• Consider the function µ0 and an algebra A with F (x) = x , which provides the existence of a
unique measure µ on (R,B(R)) such that

µ((a, b]) = b − a , for every a < b

This measure, which assigns a "length" to every Borel set in R, is the Lebesgue measure.

• If we restrict the Lebesgue measure to Borel sets on [0, 1), we obtain a probability measure P on
([0, 1],B([0, 1))) and, in particular, P satisfies
(i) If A1,A2, . . . are disjoint sets in B([0, 1)), then P

(⋃∞
n=1 An

)
=
∑∞

n=1 P(An)
(ii) If A is a translation of B ∈ B([0, 1)), then P(A) = P(B).
(iii) P([0, 1)) = 1.
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probability calculus

• (a) P(∅) = 0

• (b) P(Ac) = 1 − P(A)

• (c) P(A) ≤ 1

• (d) P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

• (e) P(A) ≤ P(B) if A ⊂ B

• (f) P(A) =
∑∞

i=1 P(A ∩ Ci ) for any partition C1,C2, . . . (law of total probability)

• inequalities
− Bonferroni’s: P(A ∩ B) ≥ P(A) + P(B)− 1 (particular case)
− Boole’s: P(∪∞

i=1Ai ) ≤
∑∞

i=1 P(Ai )
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proofs

• (a) P(A) = P(A ∪ ∅) and A ∩ ∅ = ∅ by definition, and hence P(A) = P(A) + P(∅) by (i) ■

• (b)+(c) A ∪ Ac = S and A ∩ Ac = ∅ by definition, implying that
P(S) = P(A ∪ Ac) = P(A) + P(Ac) = 1 by (ii)+(iii) ■

• (d) P(A ∪ B) = P (A ∪ (B ∩ Ac)) = P(A) + P(B ∩ Ac) given that A ∩ (B ∩ Ac) = ∅, and hence
B = (A ∩ B) ∪ (B ∩ Ac) implies that P(B)− P(A ∩ B) = P(B ∩ Ac) ■

• (e) B = A ∪ (B ∩ Ac) given that A ∩ B = A, implying that P(B) = P(A) + P(B ∩ Ac) ≥ P(A) ■
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yet one more proof

• (f) as C1,C2, . . . form a partition, Ci ∩ Cj = ∅ for all i ̸= j and S = ∪∞
i=1Ci , so that

A = A ∩ S = A ∩

(
∞⋃
i=1

Ci

)
=

∞⋃
i=1

(A ∩ Ci )

by the distributive law. However, the sets A ∩ Ci ’s are pairwise disjoints given that the Ci ’s are
mutually exclusive and hence

P(A) = P

(
∞⋃
i=1

(A ∩ Ci )

)
=

∞∑
i=1

P(A ∩ Ci ) ■
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Boole’s inequality proof

• (Boole’s Inequality) Construct a disjoint collection A∗
1 ,A

∗
2 , . . . such that ∪∞

i=1A
∗
i = ∪∞

i=1Ai , defining

A∗
1 = A1

A∗
i = Ai \

(
i−1⋃
j=1

Aj

)
, i = 2, 3, . . .

where A \ B denotes the part of A that does not intersect with B, i.e., A \ B = A ∩ Bc . It is
immediate to see that ∪∞

i=1A
∗
i = ∪∞

i=1Ai . Then

P

(
∞⋃
i=1

Ai

)
= P

(
∞⋃
i=1

A∗
i

)
=

∞∑
i=1

P (A∗
i ) .

The last equality follows since A∗
i are disjoint (verify). Since, by construction, A∗

i ⊂ Ai , so
P (A∗

i ) ≤ P (Ai ) and

∞∑
i=1

P (A∗
i ) ≤

∞∑
i=1

P (Ai )

establishing the desired result. ■
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finite sample spaces, with equiprobable elements

• We have seen that these numbers known as probabilities exist under certain conditions, and also
explored some of its properties. We will now see how to calculate those probabilities.

• The simplest case is when sample space is finite and its elements are equiprobable. Then the
probability of observing a given event is equal to the proportion of elements in the event relative
to the sample space.

• examples
− (1) suppose interest lies on the event of observing a value above 4 in a die roll: there are only two

values in the sample space that satisfy this condition, namely, {5, 6}, and hence the probability of this
event is 2/6 = 1/3.

− (2) consider now flipping twice a coin and recording heads and tails, so S = {HH,HT ,TH,TT}:
probability of observing only one head is

#{HT ,TH}
#{HH,HT ,TH,TT}

= 1/2
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counting

• In these cases, counting equiprobable outcomes is straightforward. But now consider these
examples:

− (1, lottery) In the N.Y. state lottery, a person chooses six numbers from 1, 2, ..., 44. What is the
probability that she wins?

− (2, US Open) In a single-elimination tournaments, players advance if they win the match. For 16
entrants, how many paths are there to victory?

• The trick is breaking down the problem in a series of simple tasks.
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counting

• theorem: If a job consists of k separate tasks, the i-th of which can be done in ni ways, then the
entire job can be done in

∏k
i=1 ni ways.

• (1, lottery) If sampling is without replacement, the first number can be chosen in 44 ways and
the second in 43 ways. So there are 44 × 43 = 1, 892 ways of choosing the first two numbers.

• (1, lottery) If sampling is with replacement, there are 44 × 44 = 1, 936 ways of choosing the first
two numbers.

• Determining whether sampling is done with or without replacement is a crucial feature to take
into consideration.

• The other important feature is whether ordering matters.
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counting

without replacement with replacement
ordered

unordered
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counting

• ordered, without replacement. There are

44 × 43 × 42 × 41 × 40 × 39 =
44!
38!

= 5, 082, 517, 440

possible tickets.

• ordered, with replacement. Variation of the lottery example. There are

446 = 7, 256, 313, 856

possible tickets.
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counting

• unordered, without replacement: we know the number of possible tickets when orderings are
accounted for, so we should divide by the number of redundancies.

44 × 43 × 42 × 41 × 40 × 39
6 × 5 × 4 × 3 × 2 × 1

=
44!

6!38!
= 7, 059, 052

since there are 6! ways to reorder 6 numbers.

• this is also known as the binomial coefficients:(
n

r

)
=

n!

r !(n − r)!

should be read as "n choose r".
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counting
• the last remaining case is unordered, with replacement.

• think that we randomly put 6 markers on the 44 numbers.

M MM M M M
1 2 3 · · · 31 32 33 · · · 44

• we have 6 markers and 43 divisions between the boxes: this setting could be similarly represented
as

M||MM|· · · |M|M||· · · |M

• there are (43 + 6)! = 49! ways of reordering the Ms and bars, but we have to discount for the
reordering among them. The final number is

49!
6!43!

= 13, 983, 816.

• generally, (
n + r − 1

r

)
=

(n + r − 1)!
r !(n − 1)!
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counting

without replacement with replacement
ordered permutation multiplication

n!
(n−r)!

nr

unordered combination combination(
n
r

) (
n+r−1

r

)
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counting

• question: what is the probability that at least two people in this room have a common birthday?

• answer: it is easier to calculate what is the probability that, in a group of n people, all have
different birthdays. Let it be p̄.

p̄ = 1 ×
(

364
365

)
×
(

363
365

)
× · · ·

(
365 − (n − 1)

365

)
=

365!
365n(365 − n)!

• for n = 20, p̄ is about 59%. for n = 35, p̄ is about 19%.

• the probability that at least two people have a common birthday is then 1-p̄.
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application to poker

• traditional game: 5-card poker hand from a standard 52-card deck sampling without replacement
from the deck

• whether ordered or unordered depends on the event of interest! (e.g., probability of an ace in the
first two cards)

• traditional poker game does not depend on order

• sample space S consists of all 5-card possible hands:
(52

5

)
= 2, 598, 960

• assumption: well-shuffled deck and cards randomly dealt

• P(4 aces) = 48/2, 598, 960 because there are only 48 different possible last cards

• P(4 of a kind) = 13 × 48/2, 598, 960 because there are 13 ways to specify which denomination
there will be four of
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more on poker

• question: how to compute the probability of exactly one pair?

• answer: the number of hands with exactly one pair is

13︸︷︷︸
(a)

×

(
4
2

)
︸ ︷︷ ︸
(b)

×

(
12
3

)
︸ ︷︷ ︸

(c)

× 43︸︷︷︸
(d)

= 1, 098, 240

(a) number of ways to specify the denomination of the pair

(b) number of ways to specify two cards from that denomination

(c) number of ways to specify other three denominations

(d) number of ways to specify the other three cards from those denominations

P(exactly one pair) =
1, 098, 240
2, 598, 960
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conditional probability

• every probability thus far has been unconditional, though. . . in many instances, we are in a
position to update the sample space based on new information

• example: what is the probability of drawing four aces from a well-shuffled deck? counting
arguments yield

(52
4

)
= 270, 725 distinct groups of 4 cards, but only one of these groups consists

of 4 aces

• updating approach 4/52 × 3/51 × 2/50 × 1/49 = 1/270, 725

• definition: if A and B are events in S and P(B) > 0, then the conditional probability of A given B
is

P(A|B) =
P(A ∩ B)

P(B)
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more on conditional probabilities

• it is as if B were now the sample space and hence all further occurrences are calibrated with
respect to their relation to B

• remark: if A and B are mutually exclusive, A ∩ B = ∅ and hence
P(A ∩ B) = P(A|B) = P(B|A) = 0

• for any B such that P(B) > 0, the conditional probability P(·|B) meets Kolmogorov’s axioms
− (may redefine sample space to B)

• however. . . conditional probabilities are slipperier than you think!
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the death row puzzle

• background story: governor pardons one of three prisoners (A, B or C) from the death row at
random and then informs warden.

• prisioner A asks the warden if B or C are to be executed. Warden reveals to A that B is to be
executed

• warden’s thinking: each prisoner has a 1/3 chance of pardon and, obviously, either B or C, if not
both, must be executed and hence I have revealed nothing

• A’s reasoning: given that B will be executed, either me or C will be pardoned and hence my
chance has risen to 1/2
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more on the death row puzzle

• whose reasoning is correct?

• let A, B and C denote the events that A, B, or C is pardoned. Then P(A) = P(B) = P(C) = 1/3.

• let b denote the event that the warden says that B will be executed.

• we must compute the conditional probability P(A|b) of A being pardoned given that the warden
has revealed that B will be executed

prisoner pardoned warden tells A
A
A

B dies
C dies

}
each with equal

probability
B C dies
C B dies
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still a bit more on the death row puzzle

P(b) = P(b ∩ A) + P(b ∩ B) + P(b ∩ C)

= 1/3 × 1/2 + 0 + 1/3 × 1

= 1/6 + 0 + 1/3 = 1/2

• warden correctly calculates. . .

P(A|b) = P(b ∩ A)

P(b)
=

1/6
1/2

= 1/3

• A instead computes. . .

P(A|Bc) =
P(Bc ∩ A)

P(Bc)
=

1/3
2/3

= 1/2

• A’s mistake: falsely interpreting the event b as the event Bc .

• See a more detailed explanation here.
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Bayes’ rule

• reexpressing the conditional probability formula provides a useful means to compute an
intersection probability

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

• Bayes’ rule to turn around conditional probabilities

P(A|B) = P(B|A) P(A)
P(B)

• if A1,A2, . . . is a partition of the sample space, then

P(Ai |B) =
P(B|Ai )P(Ai )

P(B)
=

P(B|Ai )P(Ai )∑∞
j=1 P(B|Aj)P(Aj)
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Bayes’ rule example
• example: Morse code uses "dots" and "dashes" to transmit messages, but often there are errors in

transmission. Suppose that dots are sent with probability 3
7 and dashes are sent with probability

4
7 , and with probability 1

8 a dot is received as a dash, and vice-versa.
• If we observe a dot, what is the probability that a dot was sent?

P(dot sent|dot received) =
P(dot sent ∩ dot received)

P(dot received)

= P(dot received|dot sent)
P(dot sent)

P(dot received)

and we know that P(dot received|dot sent) = 1 − 1
8 = 7

8 and P(dot sent) = 3
7 . We now need to

figure P(dot received) out.

P(dot received) = P(dot received ∩ dot sent) + P(dot received ∩ dash sent)

= P(dot received|dot sent)P(dot sent)

+P(dot received|dash sent)P(dash sent)

=
7
8
× 3

7
+

1
8
× 4

7
=

25
56

• So P(dot sent|dot received) = 21
25 .
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statistical independence

• the occurrence of a particular event B sometimes brings about no information about another
event A, and hence P(A|B) = P(A)

• Bayes’ rule then yields

P(B|A) =
P(A|B)P(B)

P(A)
=

P(A)P(B)

P(A)
= P(B)

• definition: two events A and B are statistically independent if

P(A ∩ B) = P(A)P(B)
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statistical independence

• proposition: if A and B are independent events, then the following pairs are also independent:
(i) A and Bc ;
(ii) Ac and B;
(iii) Ac and Bc .

• proof: we will show (i) only. We must show that P(A ∩ Bc) = P(A)P(Bc). So

P(A ∩ Bc) = P(A)− P(A ∩ B)

= P(A)− P(A)P(B)

= P(A)(1 − P(B))

= P(A)P(Bc)

■

• question: if A and B are disjoint events, are they independent? (no, unless one is impossible)
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independence between multiple events

• one of the reasons to employ the independence definition based on the intersection probability is
to facilitate the extension to multiple events, though. . . we must be careful

• at first glance, it suffices to say that A, B, and C are independent if
P(A ∩ B ∩ C) = P(A)P(B)P(C)

• counterexample: tossing two dice

• alternatively, we may think of defining independence between multiple events in terms of pairwise
independence

• counterexample: permutations of letters
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tossing two dice

• sample space S = {(1, 1), . . . , (1, 6), . . . , (6, 1), . . . , (6, 6)}

• events:
− A = {(1, 1), (2, 2), . . . , (6, 6)} P(A) = 1/6
− B = {sum between 7 and 10} P(B) = 1/2
− C = {sum is 2 or 7 or 8} P(C) = 1/3

P(A ∩ B ∩ C) = P(sum is 8, composed of doubles)

= 1/36 = 1/6 × 1/2 × 1/3 = P(A)P(B)P(C)

• however, P(B ∩ C) ̸= P(B)P(C), for example, and hence P(A ∩ B ∩ C) = P(A)P(B)P(C) is not
strong enough to ensure pairwise independence

63 / 83



letter permutation

• equiprobable sample space: 3! permutations of (a, b, c) along with triplets of each letter

S =


aaa bbb ccc
abc bca cba
acb bac cab


• events: Ai = {ith place of the triplet is a} P(Ai ) = 1/3

− P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) = 1/9, satisfying pairwise independence
− P(A1 ∩ A2 ∩ A3) = 1/9 ̸= 1/27 = P(A1)P(A2)P(A3), violating probability requirement
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mutual independence

• definition: A1, . . . ,An are mutually independent if

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij )

for any subcollection Ai1 , . . . ,Aik

• example: three coin tosses
− S = {HHH,HHT ,HTH,THH,TTH,THT ,HTT ,TTT}
− Hi = {ith toss is H}, P(Hi ) = 1/2

P(H1 ∩ H2) = P({HHH}, {HHT}) = 1/4 = P(H1)P(H2)

P(H1 ∩ H2 ∩ H3) = P({HHH}) = 1/8 = P(H1)P(H2)P(H3)
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making life easier

• in many experiments, it is easier to deal with a summary variable than keeping track of the
original probability structure

• example: yes-or-no referendum in a class of 50 students
− sample space has 250 ordered strings of 1s and 0s
− X = number of 1s, hopefully captures the essence of the the matter, though. . . with a much smaller

sample space

SX = {0, 1, . . . , 50}

• definition: a random variable X : S → E is a function mapping the sample space S into a
measurable space E .

− Understood that Ω is part of the probability space (S,S,P).
− E is usually R.
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examples

experiment random variable
toss two dice X = sum of the rolls
toss a coin 25 times X = number of heads
amount of fertilizer X = yield/acre
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devil is in details

• we must also define a new sample space and check how should we proceed with the probability
function from P(·) on Ω = {ω1, . . . , ωn} to PX (·) on ΩX = {x1, . . . , xm}

• device: we observe X = xi if and only if the outcome of the random experiment is an ωj ∈ Ω such
that X (ωj) = xi

PX (X = xi ) = P({ωj ∈ Ω : X (ωj) = xi})

• Note that random variables are denoted with uppercase letters (X ) and realized values or ranges
are denoted with lowercase letters (x).
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Kolmogorov is happy with induced probabilities

• (exercise 1.45) Show that the induced probability function satisfies the Kolmogorov axioms.

• proof: Let X = {x1, . . . , xm} be the range of the random variable X . X is finite, so define the set
of all subsets of X as B, a σ-algebra.

(i) If A ∈ B, then PX (A) = P
(
∪xi∈A{ωj ∈ Ω : X (ωj ) = xi}

)
≥ 0 since P is a probability function.

(ii) PX (X ) = P
(
∪m
i=1{ωj ∈ Ω : X (ωj ) = xi}

)
= P(Ω) = 1.

(iii) If A1,A2, · · · ∈ B are pairwise disjoint then

PX

( ∞⋃
k=1

Ak

)
= P

( ∞⋃
k=1

{∪xi∈Ak
{ωj ∈ Ω : X (ωj ) = xi}}

)

=
∞∑
k=1

P
(
∪xi∈Ak

{ωj ∈ Ω : X (ωj ) = xi}
)

=
∞∑
k=1

PX (Ak )

• From now on, we can drop the distinction between PX and P!
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revisiting some examples

• three coin tosses

s HHH HHT HTH THH TTH THT HTT TTT

X (s) 3 2 2 2 1 1 1 0
PX 1/8 3/8 3/8 1/8

• opinion poll: recall that SX = {0, 1, . . . , 50} and assume that each of the 250 strings is equally
likely, then the induced probability reads

PrX (X = x) =

(50
x

)
250
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(un)countable sample spaces

• previous illustrations have both finite S and finite SX , for which the definition of PX is
straightforward

• countable sample spaces: still straightforward!

• uncountable sample spaces: we define the induced probability in a similar fashion. For any set
A ⊂ SX ,

PX (X ∈ A) = P({ω ∈ Ω : X (ω) ∈ A})

defines a legitimate probability function for which Kolmogorov’s axioms hold.
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support of a random variable

• definition: the support of a random variable X is the smallest closed set RX ⊆ B such that
PX (RX ) = 1.

• alternative definition in Rn: The support of a random variable X with values in Rn is the set
{x ∈ Rn|PX (B(x , r)) > 0, for all r > 0}.

− B(x , r) denotes the ball with center at x and radius r .

• For discrete random variables, RX ≡ {x ∈ Rn|P(X = x) > 0}.
− RX is also countable.
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distribution

• definition: we define the cumulative distribution function FX (x) of a random variable X as

FX (x) = P(X ≤ x)

for every x ∈ ΩX

• example: three coin tosses, X = number of heads

FX (x) =


0 if −∞ < x < 0
1/8 if 0 ≤ x < 1
1/2 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if 3 ≤ x < ∞
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properties of the cdf

• F (x) is a cdf if and only if

(i) limx→−∞ FX (x) = 0 and limx→∞ FX (x) = 1

(ii) FX (x) is a nondecreasing function of x

(iii) FX (x) is right-continuous, limx↓x0 FX (x) = FX (x0)

• Right-continuity is a consequence of the definition of the cdf. If we had defined
F (x) = PX (X < x), then F would have been left-continuous.
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example. . . tossing for a head

• the experiment consists of tossing a coin until a head appears

• X = number of tosses until first head

• p is the probability of a head on any given toss

P(X = x) = (1 − p)x−1p

⇕

P(X ≤ x) =
x∑

i=1

P(X = i)

=
x∑

i=1

(1 − p)i−1p

=
1 − (1 − p)x

1 − (1 − p)
p

= 1 − (1 − p)x

for x = 1, 2, . . ..
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geometric distribution

FX (x) = P(X ≤ x) = 1 − (1 − p)x 0 < p < 1

x = 1, 2, . . .

• let’s check whether it indeed is a distribution

− limx→−∞ FX (x) = 0 given that FX (x) = 0 if x < 0

− limx→∞ FX (x) = 1 given that limx→∞(1 − p)x = 0

− FX (x) is nondecreasing given that we keep adding positive terms

− FX (x) is right-continuous given that limϵ↓0 FX (x + ϵ) = FX (x)

− FX (x) is flat between nonnegative integers (discrete distribution)
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continuous vs discrete distributions

• definition: a random variable is discrete if FX (x) is a step function of x , whereas it is continuous if
FX (x) is a continuous function of x

• example: logistic distribution: FX (x) =
1

(1+e−x )

− limx→−∞ FX (x) = 0 given that limx→−∞ e−x = ∞

− limx→∞ FX (x) = 1 given that limx→∞ e−x = 0

− FX (x) is nondecreasing given that F ′
X (x) =

e−x

(1+e−x )2
> 0

− FX (x) is not only right-continuous, but also continuous
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identically distributed

• the nice thing about distribution functions is that they completely determine the probability
structure of a random variable if P(·) is defined only for events in the Borel σ-algebra on R,
defined as B.

• definition: the random variables X and Y are identically distributed if, for every set A ∈ B,
P(X ∈ A) = P(Y ∈ A)

• equivalence theorem: X and Y are identically distributed if and only if FX (x) = FY (x) for every
x ∈ R

• proof: (⇒) Because X and Y are identically distributed, for any set A ∈ B,
P(X ∈ A) = P(Y ∈ A). In particular, for every x , the set (−∞, x ] is in B, and

FX (x) = P(X ∈ (−∞, x ]) = P(Y ∈ (−∞, x ]) = FY (x).
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point probability

• definition: we define the probability mass function of a discrete random variable X as
fX (x) = P(X = x)

• example: geometric distribution

fX (x) = P(X = x) =

{
(1 − p)x−1p for x = 1, 2, . . .
0 otherwise

P(a ≤ X ≤ b) =
b∑

x=a

fX (x) =
b∑

x=a

(1 − p)x−1p

P(X ≤ b) =
b∑

x=1

fX (x) = FX (b)
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looks of the geometric distribution
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how about continuous variables?

• naïve calculation: {X = x} ⊂ [x − ϵ ≤ X ≤ x ] for any ϵ > 0

P(X = x) ≤ P(x − ϵ ≤ X ≤ x) = FX (x)− FX (x − ϵ)

⇒ 0 ≤ P(X = x) ≤ lim
ϵ↓0

[FX (x)− FX (x − ϵ)] = 0

by the continuity of FX .

• definition: we implicitly define the probability density function of a continuous random variable X
as

FX (x) =

∫ x

−∞
fX (u)du for all u ∈ R

• P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b) given that P(X = x) = 0

• moreover, the fundamental theorem of calculus ensures that, if fX (x) is continuous, then
fX (x) = F ′

X (x)
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requirements

• f (x) is a pdf/pmf if and only if

− (i) f (x) ≥ 0 for all x ∈ R

− (ii)
∫∞
−∞ f (u) du = 1

− proof: if f (x) is a pdf (or pmf), (i)+(ii) follow immediately from definition; in particular

1 = lim
x→∞

F (x) =

∫ ∞

−∞
f (u) du

• the converse implication is equally easy to prove given that we may define F (x) from f (x) and
then verify it indeed is a cdf
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• Casella and Berger, Ch. 1
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83 / 83


	Introduction to probability
	Random variables
	Distribution and density functions
	Density and mass functions
	Exercises

